Take some self map on the unit disk , . If , has a removable singularity at . On , , and with the maximum principle on , we derive everywhere. In particular, if anywhere, constancy by the maximum principle tells us that , where . with the removable singularity removed has , so again, by the maximum principle, means is a constant of modulus . Moreover, if is not an automorphism, we cannot have anywhere, so in that case, .

# Category: analysis

## Cauchy’s integral formula in complex analysis

I took a graduate course in complex analysis a while ago as an undergraduate. However, I did not actually understand it well at all, to which is a testament that much of the knowledge vanished very quickly. It pleases me though now following some intellectual maturation, after relearning certain theorems, they seem to stick more permanently, with the main ideas behind the proof more easily understandably clear than mind-disorienting, the latter of which was experienced by me too much in my early days. Shall I say it that before I must have been on drugs of something, because frankly the way about which I approached certain things was frankly quite weird, and in retrospect, I was in many ways an animal-like creature trapped within the confines of an addled consciousness oblivious and uninhibited. Almost certainly never again will I experience anything like that. Now, I can only mentally rationalize the conscious experience of a mentally inferior creature but such cannot be experienced for real. It is almost like how an evangelical cannot imagine what it is like not to believe in God, and even goes as far as to contempt the pagan. Exaltation, exhilaration was concomitant with the leap of consciousness till it not long after established its normalcy.

Now, the last of non-mathematical writing in this post will be on the following excerpt from Grothendieck’s *Récoltes et Semailles:*

In those critical years I learned how to be alone. [But even] this formulation doesn’t really capture my meaning. I didn’t, in any literal sense learn to be alone, for the simple reason that this knowledge had never been unlearned during my childhood. It is a basic capacity in all of us from the day of our birth. However these three years of work in isolation [1945–1948], when I was thrown onto my own resources, following guidelines which I myself had spontaneously invented, instilled in me a strong degree of confidence, unassuming yet enduring, in my ability to do mathematics, which owes nothing to any consensus or to the fashions which pass as law….By this I mean to say: to reach out in my own way to the things I wished to learn, rather than relying on the notions of the consensus, overt or tacit, coming from a more or less extended clan of which I found myself a member, or which for any other reason laid claim to be taken as an authority. This silent consensus had informed me, both at the lycée and at the university, that one shouldn’t bother worrying about what was really meant when using a term like “volume,” which was “obviously self-evident,” “generally known,” “unproblematic,” etc….It is in this gesture of “going beyond,” to be something in oneself rather than the pawn of a consensus, the refusal to stay within a rigid circle that others have drawn around one—it is in this solitary act that one finds true creativity. All others things follow as a matter of course.

Since then I’ve had the chance, in the world of mathematics that bid me welcome, to meet quite a number of people, both among my “elders” and among young people in my general age group, who were much more brilliant, much more “gifted” than I was. I admired the facility with which they picked up, as if at play, new ideas, juggling them as if familiar with them from the cradle—while for myself I felt clumsy, even oafish, wandering painfully up an arduous track, like a dumb ox faced with an amorphous mountain of things that I had to learn (so I was assured), things I felt incapable of understanding the essentials or following through to the end. Indeed, there was little about me that identified the kind of bright student who wins at prestigious competitions or assimilates, almost by sleight of hand, the most forbidding subjects.

In fact, most of these comrades who I gauged to be more brilliant than I have gone on to become distinguished mathematicians. Still, from the perspective of thirty or thirty-five years, I can state that their imprint upon the mathematics of our time has not been very profound. They’ve all done things, often beautiful things, in a context that was already set out before them, which they had no inclination to disturb. Without being aware of it, they’ve remained prisoners of those invisible and despotic circles which delimit the universe of a certain milieu in a given era. To have broken these bounds they would have had to rediscover in themselves that capability which was their birthright, as it was mine: the capacity to be alone.

Grothendieck was first known to me the dimwit in a later stage of high school. At that time, I was still culturally under the idiotic and shallow social constraints of an American high school, though already visibly different, unable to detach too much from it both intellectually and psychologically. There is quite an element of what I now in recollection with benefit of hindsight can characterize as a harbinger of unusual aesthetic discernment, one exercised and already vaguely sensed back then though lacking in reinforcement in social support and confidence, and most of all, in ability. For at that time, I was still much of a species in mental bondage, more often than not driven by awe as opposed to reason. In particular, I awed and despaired at many a contemporary of very fine range of myself who on the surface appeared to me so much more endowed and quick to grasp and compute, in an environment where judgment of an individual’s capability is dominated so much more so by scores and metrics, as opposed to substance, not that I had any of the latter either.

Vaguely, I recall seeing the above passage once in high school articulated with so much of verbal richness of a height that would have overwhelmed and intimidated me at the time. It could not be understood by me how Grothendieck, this guy considered by many as greatest mathematician of the 20th century, could have actually felt dumb. Though I felt very dumb myself, I never fully lost confidence, sensing a spirit in me that saw quite differently from others, that was far less inclined to lose himself in “those invisible and despotic circles” than most around me. Now, for the first time, I can at least subjectively feel identification with Grothendieck, and perhaps I am still misinterpreting his message to some extent, though I surely feel far less at sea with respect to that now than before.

Later I had the fortune to know personally one who gave a name to this implicit phenomenon, aesthetic discernment. It has been met with ridicule as a self-congratulatory achievement one of lesser formal achievement, a concoction of a failure in self-denial. Yet on the other hand, I have witnessed that most people are too carried away in today’s excessively artificially institutionally credentialist society that they lose sight of what is fundamentally meaningful, and sadly, those unperturbed by this ill are few and fewer. Finally, I have reflected on the question of what good is knowledge if too few can rightly perceive it. Science is always there and much of it of value remains unknown to any who has inhabited this planet, and I will conclude at that.

So, one of the theorems in that class was of course **Cauchy’s integral formula**, one of the most central tools in complex analysis. Formally,

*Let be a bounded domain with piecewise smooth boundary. If is analytic on , and extends smoothly to the boundary of , then*

This theorem was actually somewhat elusive to me. I would learn it, find it deceptively obvious, and then forget it eventually, having to repeat this cycle. I now ask how one would conceive of this theorem. On that, we first observe that by continuity, we can show that the average on a circle will go to its value at the center as the radius goes to zero. With , we can with the in the denominator, vanish out any factor of in the integrand. From this, we have the result if sufficiently small circle. Even with this, there is implicit Cauchy’s integral theorem, the one which states that integral of holomorphic function inside on closed curve is zero. Speaking of which, we can extend to any bounded domain with piecewise smooth boundary along the same principle.

Cauchy’s integral formula is powerful when the integrand is bounded. We have already seen this in Montel’s theorem. In another even simpler case, in Riemann’s theorem on removable singularities, we can with our upper bound on the integrand , establish with establish that for , the coefficient in the Laurent series about the point is .

This integral formula extends to all derivatives by differentiating. Inductively, with uniform convergence of the integrand, one can show that

.

An application of this for a bounded entire function would be to contour integrate along an arbitrarily large circle to derive an upper bound (which goes to as ) on the derivatives. This gives us Liouville’s theorem, which states that bounded entire functions are constant, by Taylor series.

## Weierstrass products

Long time ago when I was a clueless kid about the finish 10th grade of high school, I first learned about Euler’s determination of . The technique he used was of course factorization of via its infinitely many roots to

.

Equating the coefficient of in this product, , with the coefficient of in the well-known Maclaurin series of , , gives that .

This felt to me, who knew almost no math, so spectacular at that time. It was also one of great historical significance. The problem was first posed by Pietro Mengoli in 1644, and had baffled the most genius of mathematicians of that day until 1734, when Euler finally stunned the mathematical community with his simple yet ingenious solution. This was done when Euler was in St. Petersburg. On that, I shall note that from this, we can easily see how Russia had a rich mathematical and scientific tradition that began quite early on, which must have deeply influenced the preeminence in science of Tsarist Russia and later the Soviet Union despite their being in practical terms quite backward compared to the advanced countries of Western Europe, like UK and France, which of course was instrumental towards the rapid catching up in industry and technology of the Soviet Union later on.

I had learned of this result more or less concurrently with learning on my own (independent of the silly American public school system) what constituted a rigorous proof. I remember back then I was still not accustomed to the cold, precise, and austere rigor expected in mathematics and had much difficulty restraining myself in that regard, often content with intuitive solutions. From this, one can guess that I was not quite aware of how Euler’s solution was in fact not a rigorous one by modern standards, despite its having been noted from the book from which I read this. However, now I am aware that what Euler constructed was in fact a Weierstrass product, and in this article, I will explain how one can construct those in a way that guarantees uniform convergence on compact sets.

Given a finite number of points on the complex plane, one can easily construct an analytic function with zeros or poles there for any combination of (finite) multiplicities. For a countably infinite number of points, one can as well the same way but how can one know that it, being of a series nature, doesn’t blow up? There is quite some technical machinery to ensure this.

We begin with the restricted case of simple poles and arbitrary residues. This is a special case of what is now known as Mittag-Leffler’s theorem.

**Theorem 1.1 (Mittag-Leffler)** *Let be a sequence of distinct complex numbers satisfying . Let be any sequence of non-zero complex numbers. Then there exists a (not unique) sequence of non-negative integers, depending only on the sequences and , such that the series *

*is totally convergent, and hence absolutely and uniformly convergent, in any compact set . Thus the function is meromorphic, with simple poles having respective residues .*

*Proof:* Total convergence, in case forgotten, refers to the Weierstrass M-test. That said, it suffices to establish

,

where . For total convergence on any compact set, we again use the classic technique of monotonically increasing disks to centered at the origin with radii . This way for , we have

.

With we can for any choose large enough to satisfy this. This makes clear that the is our mechanism for constraining the magnitude of the values attained, which we can do to an arbitrary degree.

The rest of the proof is more or less trivial. For any , pick some the disk of which contains it. For , we can bound with , which must be bounded by continuity on compact set (now you can see why we must omit the poles from our domain). ▢

**Lemma 1.1** *Let the functions be regular in a compact set , and let the series be totally convergent in . Then the infinite product is uniformly convergent in .*

*Proof:* Technical exercise left to the reader. ▢

Now we present a lemma that allows us to take the result of Mittag-Leffler (*Theorem 1.1*) to meromorphic functions with zeros and poles at arbitrary points, each with its prescribed multiplicity.

**Lemma 1.2** *Let be a meromorphic function. Let be the poles of , all simple with respective residues . Then the function*

*is meromorphic. The zeros (resp. poles) of are the points such that (resp. ), and the multiplicity of as a zero (resp. pole) of is (resp. ).*

*Proof:* Taking the exponential of that integral has the function of turning it into a one-valued function. Take two paths and from to with intersects not any of the poles. By the residue theorem,

,

where is the sum of residues of between and . Because the s are integers, must be an integer from which follows that our exponential is a one-valued function. It is also, with the exponential being analytic, also analytic. Moreover, out of boundedness, it is non-zero on . We can remove the pole at with . This remains analytic and is without zeros at . From this, we derive

We can continue this process for the remainder of the s.* * ▢

**Theorem 1.2 (Weierstrass)** *Let be meromorphic, and regular and at . Let be the zeros and poles of with respective multiplicities , where if is a zero and if is a pole of . Then there exist integers and an entire function such that*

*where the product converges uniformly in any compact set .*

*Proof:* Let be the function in *(1.1)* with s such that the series is totally convergent, and let be the function in *(1.2)*. By *Theorem 1.1* and *Lemma 1.2*, is meromorphic, with zeros of multiplicities if , and with poles of multiplicities if . Thus and have the same zeros and poles with the same multiplicities, whence is entire and . Therefore is an entire function, and

Uniform convergence along path of integration from to (not containing the poles) enables term-by-term integration. Thus, from *(1.2)*, we have

With this, *(1.3)* follows from *(1.4)*. Moreover, in a compact set , we can always bound the length of the path of integration, whence, by *Theorem 1.1*, the series

is totally convergent in . Finally, invoke *Lemma 1.1* to conclude that the exponential of that is total convergent in as well, from which follows that *(1.3)* is too, as desired. ▢

If at , our function has a zero or pole, we can easily multiply by with the multiplicity there to regularize it. This yields

for Weierstrass factorization formula in this case.

Overall, we see that we transform Mittag-Leffler (*Theorem 1.1)* into Weierstrass factorization *(Theorem 1.2)* through integration and exponentiation. In complex, comes up quite often integration of an inverse or order term to derive a logarithm, which once exponentiated gives us a linear polynomial to the power of the residue, useful for generating zeros and poles. Once this is observed, that one can go from the former to the latter with some technical manipulations is strongly hinted at, and one can observe without much difficulty that the statements of *Lemma 1.1* and *Lemma 1.2* are needed for this.

**References**

- Carlo Viola,
*An Introduction to Special Functions*, Springer International Publishing, Switzerland, 2016, pp. 15-24.

## Implicit function theorem and its multivariate generalization

The implicit function theorem for a single output variable can be stated as follows:

**Single equation implicit function theorem.** Let* be a function of class on some neighborhood of a point . Suppose that and . Then there exist positive numbers such that the following conclusions are valid.*

*a. For each in the ball there is a unique such that and . We denote this by ; in particular, .*

*b. The function thus defined for is of class , and its partial derivatives are given by*

.

*Proof.* For part (a), assume without loss of generality positive . By continuity of that partial derivative, we have that in some neighborhood of it is positive and thus for some there exists such that implies that there exists a unique (by intermediate value theorem along with positivity of ) such that with , which defines some function .

To show that has partial derivatives, we must first show that it is continuous. To do so, we can let be our and use the same process to arrive at our , which corresponds to .

For part (b), to show that its partial derivatives exist and are equal to what we desire, we perturb with an that we let WLOG be

.

Then with , we have . From the mean value theorem, we can arrive at

for some . Rearranging and taking gives us

.

The following can be generalized to multiple variables, with implicit functions and constraints. ▢

**Implicit function theorem for systems of equations.** *Let be an valued functions of class on some neighborhood of a point and let . Suppose that and . Then there exist positive numbers such that the following conclusions are valid.*

*a. For each in the ball there is a unique such that and . We denote this by ; in particular, .*

*b. The function thus defined for is of class , and its partial derivatives can be computed by differentiating the equations with respect to and solving the resulting linear system of equations for .*

*Proof:* For this we will be using Cramer’s rule, which is that one can solve a linear system (provided of course that is non-singular) by taking matrix obtained from substituting the th column of with and letting be the determinant of that matrix divided by the determinant of .

From this, we are somewhat hinted that induction is in order. If is invertible, then one of its submatrices is invertible. Assume WLOG that such applies to the one determined by . With this in mind, we can via our inductive hypothesis have

determine for . Here we are making an independent variable and we can totally do that because we are inducting on the number of outputs (and also constraints). Substituting this into the constraint, this reduces to the single variable case, with

.

It suffices now to show via our hypothesis that . Routine application of the chain rule gives

The s are the solution to the following linear system:

.

Let denote the submatrix induced by . We see then that in the replacement for Cramer’s rule, we arrive at what is but with the last column swapped to the left times such that it lands in the th column and also with a negative sign, which means

.

Now, we substitute this into to get

Finally, we apply the implicit function theorem for one variable for the that remains. ▢

**References**

- Gerald B. Folland,
*Advanced Calculus*, Prentice Hall, Upper Saddle River, NJ, 2002, pp. 114–116, 420–422.

## A nice consequence of Baire category theorem

In a complete metric space , we call a point for which is open an isolated point. If is countable and there are no isolated points, we can take , with each of the open and dense, to violate the Baire category theorem. From that, we can arrive at the proposition that in a complete metric space, no isolated points implies that the space uncountable, and similarly, that countable implies there is an isolated point.

## Riemann mapping theorem

I am going to make an effort to understand the proof of the Riemann mapping theorem, which states that there exists a conformal map from any simply connected region that is not the entire plane to the unit disk. I learned of its significance that its combination with the Poisson integral formula can be used to solve basically any Dirichlet problem where the region in question in simply connected.

Involved in this is Montel’s theorem, which I will now state and prove.

**Definition** *A normal family of continuous functions is one for which every sequence in it has a uniformly convergent subsequence.*

**Montel’s theorem** *A family on domain of holomorphic functions which is locally uniformly bounded is a normal family.*

*Proof:* Turns out holomorphic alongside local uniform boundness is enough for us to establish local equicontinuity via the Cauchy integral formula. On any compact set , we can find some for which for every point , . By local boundedness we have some such that in all of . Thus, for any , we can use Cauchy’s integral formula, for any . In that, the radius versus is used to bound the denominator with .

This shows it’s locally Lipschitz and thus locally equicontinuous. To choose the we can divide our by that Lipschitz constant alongside enforcing less than so as to stay inside the domain.

With this we can finish off with the Arzela-Ascoli theorem. ▢

Now take the family of analytic, injective functions from simply connected region onto the unit disk which take to . On this we have the following.

**Proposition** *If is such that for all , , then surjects onto .*

*Proof: *We prove the contrapositive. In order to do so, it suffices to find for any that hits not , , where are analytic with and is a self-map on that fixes and is not an automorphism. In that case, we can deduce from Schwarz lemma that and thereby from the chain rule that .

Recall that we have automorphisms on , , for all and that their inverses are also automorphisms. Let’s try to take to , then to via , and finally to . With this, we have a working . ▢

**Nonemptiness of family**

It is not difficult to construct an analytic injective self map on that sends to . The part of mapping to is in fact trivial with the s. To do that it suffices to map to as after that, we can invert.

Since is not the entire complex plane, there is some . By translation, we can assume that . Because the region is simply connected, there is a path from to outside the region, which means there is an analytic branch of the square root. For any that gets hits by that, does not. By the open mapping theorem, we can find a ball centered at that is entirely outside the region. With this, we can translate and dilate accordingly to shift that to the unit disk.

**Construction of limit to surjection**

We can see now that if we can construct a sequence of functions in our family that converges to an analytic one with the same zero at with maximal derivative (in absolute value) there, we are finished. Specifically, let be a sequence from such that

.

This can be done by taking functions with sufficiently increasing derivatives at . With Montel’s theorem on our obviously locally uniformly bounded family, we know that our family is normal, and thus by definition, we can extract some subsequence that is uniformly convergent on compact sets. Now it remains to show that the function converged to is analytic and injective.

The injective part follows from a corollary of Hurwitz’s theorem, which we now state.

**Hurwitz’s theorem (corollary of)** *If is a sequence of injective analytic functions with converge uniformly on compact sets to , then is constant or injective.*

*Proof:* Recall that Hurwitz’s theorem states that if has a zero of some multiplicity at some point , then for any , we will, past some in the index of the sequence, have zeros within for all , provided is not constantly . For any point to see that a non-constant can hit it only once, it suffices to do a translation by that point on all the s to turn it into a zero, so that the hypothesis of Hurwitz’s theorem, which in this case, bounds the number of zeros above by , with the s being injective, can be applied. ▢

To show analyticity, we can use Weierstrass’s theorem.

**Weierstrass’s theorem*** Take and supposed it converges uniformly on compact sets to . Then the following hold:*

* a. is analytic.*

* b. converges to uniformly on compact sets.*

*Proof:* This is a more standard theorem, so I will only sketch the proof. Recall the definition of compact as possessing the every cover has finite subcover property. This is so powerful, because we can for any collection of balls centered at every point of the cover, find a finite of them that covers the entire space, and finiteness allows us to take a maximum or minimum of finite s or s to uniformize some limit.

We can do the same here. For every on a compact set, express as integral of via Cauchy’s integral formula on some ball centered at . Uniform convergence of on the boundary to allows us to put the limit inside the integral to give us , as represented via Cauchy’s integral formula. The same can be done for the

Again we can use two radii as done in the proof of Montel’s theorem to impose uniform convergence on a smaller ball. ▢

Finally, our candidate conformal map to satisfies that . If not, convergence would be naught at since for all .

This gives us existence. There is also a uniqueness aspect of the Riemann mapping theorem that comes when one imposes . This is very elementary to prove and will be left to the reader.

## Arzela-Ascoli theorem and delta epsilons

I always like to think of understanding of the delta epsilon definition of limit as somewhat of an ideal dividing line on the cognitive hierarchy, between actually smart and pseudo smart. I still remember vividly struggling to grok that back in high school when I first saw it junior year, though summer after, it made sense, as for why it was reasonable to define it that way. That such was only established in the 19th century goes to show how unnatural such abstract precise definitions are for the human brain (more reason to use cognitive genomics to enhance it 😉 ). At that time, I would not have imagined easily that this limit definition could be generalized further, discarding the deltas and epsilons, which presumes and restricts to real numbers, as it already felt abstract enough. Don’t even get me started on topological spaces, nets, filters, and ultrafilters; my understanding of them is still cursory at best, but someday I will fully internalize them.

Fortunately, I have improved significantly since then, both in terms of experience and in terms of my biological intelligence, that last night, I was able to reconstruct in my head the proof of the Arzela-Ascoli theorem, which also had been once upon a time mind-boggling. Remarkably, that proof, viewed appropriately, comes naturally out of just a few simple, critical observations.

The statement of the theorem is as follows.

**Arzela-Ascoli theorem** *Let be a family of functions from to that are uniformly bounded and equicontinuous. Then there is a sequence of of elements in that converges uniformly in .*

The rationals are dense in the reals and make an excellent starting point. Uniform boundedness enables us employ Bolzano-Weierstrass to construct a sequence of functions convergent at any rational in . With a countable number of such rationals, we can iteratively filter this sequence to construct one that converges at every rational in . Essentially, we have an enumeration of the rationals in and a chain of subsequences based on that, where in the th subsequence is convergent at the first rationals in the enumeration, and Bolzano-Weierstrass is applied onto the results of the application of the functions of that subsequence on the th rational to yield another subsequence. Take, diagonally, the th function in the th subsequence, to derive our desired uniformly convergent sequence, which we call .

To show uniform convergence, it suffices to show uniform Cauchyness, namely that for any , there is an such that implies for all . By compactness, open neighborhoods of all rationals of , as an open cover, has a finite subcover. Each element of the subcover comes from some rational of and across that finite subset of we can for any take the max of all the s for convergence. This means that so long as our neighborhoods are sufficiently small, we can for any point have some that is the point of focus of the neighborhood of our finite subcover containing and thereby connect to by equicontinuity and use our maximum (over finite elements) to connect that to and use equicontinuity again to connect that to . Thus, triangle inequality over three of suffices.

More explicitly, equicontinuity-wise, we have for every some open neighborhood of such that implies that .