Another characterization of compactness

The canonical definition of compactness of a topological space X is every open cover has finite sub-cover. We can via contraposition translate this to every family of open sets with no finite subfamily that covers X is not a cover. Not a cover via de Morgan’s laws can be characterized equivalently as has complements (which are all closed sets) which have finite intersection. The product is:

A topological space is compact iff for every family of closed sets with the finite intersection property, the intersection of that family is non-empty.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s